Chapter 18 XtraWrk – D.C. Circuits

b.)

18.1) For the circuit shown to the right, determine the power supply's internal resistance.

- 18.2) Consider the two circuits shown to the right.
 - a.) For Circuit "a", determine the equivalent resistance of the resistor combination.
 - b.) Determine the current in each element.

9.0

 $\dot{V_o} = 12 v$

- c.) For Circuit "b", determine the equivalent resistance of the resistor combination.
- d.) Determine the current in each element.

18.4) A voltmeter is placed across a power supply to measure the source's terminal voltage, which is found to be 9.00 V. Give the circuit shown:

- a.) Determine the current in the circuit.
- b.) Determine the EMF for the power supply.

18.5) Consider the combination of resistors shown to the right.

- a.) Determine the equivalent resistance for the combination.
- b.) If a 34.0 V source is placed across the combination, what current will pass through each resistor??
- 18.6) Consider the circuit to the right:
 - a.) Determine the equivalent resistance of the circuit shown to the right.
 - b.) With the voltage between points *a* and *b* being 35.0 V, what is the current through each resistor?
- 18.9) Consider the circuit to the right.
 - a.) Determine the electrical potential between points *a* and *b*.
 - b.) What is the current through the 20.0Ω resistor?

18.17.) The ammeter reads 2.00 A. What are the unknown current values denotes in the circuit?

18.20) For the circuit shown to the right, I_1 is known to be 3.0 A but the values of ε and R are unknown. What are the currents I_2 and I_3 ?

18.21) Introductory Kirchoff's Law problem: Use Kirchoff's Laws to determine the currents in each branch (enjoy the numbers—it isn't going to happen on a test!).

- a.) How many nodes are there?
- b.) How many branches are there?
- c.) How many independent node equations can you write for the circuit? . . . independent loop equations?
- d.) Derive an expression (then put in the numbers) for each meter reading.

